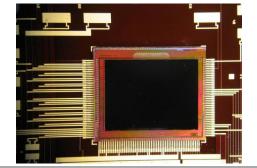

• In 2012 and R&T funded by CNES and CEA to realize and characterize HgCdTe detectors for ECHO.

- Realized MCT p/n
- Hybridation to an **existing** ROIC readout circuit (Not optimized)
- Test at 77k
- CEA/IRFU (Saclay):


- Test bench
- Characterization of detectors from 80k to 30k

LWIR HgCdTe CEA/LETI

Main features

- Format: 320x240
- Pixel size: 30µm
- Roic: CTIA (existing at LETI; to be optimized later)
- Well depth: 2 channels:100 fF=1.12 x 1E6 / 500 fF=5.6 x 1E6
- Readout noise : 100fF(150 e-) 500fF(700 e-) (not optimized)

Note: several different technological variants explored

Alternative HgCdTe CEA/LETI 3/3

Some promissing results so far at 40k

Detecteur	12-03	12-17
Technology	Variant	Historique
$\lambda_{\rm C}$	10.4μm	11.2µm
Dark Current	40 e/s	11600 e/s
Opérabilité ⁽¹⁾	40%	N/A
RQE (78K)	70%	70%
RQE(40K)	Drop with temperature	70%

Future developments

- Next steps to develop HgCdTe detectors for ECHO
 - A new run funded by CNES and CEA;
 - Detector available end of the year
 - Several additional runs needed to optimize detectors. Dedicated ROIC also needed.

EChO revue CNES 12-06-2013