Extracting Faint Eclipse Signals: Spitzer Observations of TrES-1

Patricio E. Cubillos

Joe Harrington N. Madhusudhan (Yale) UCF exoplanet group

EChO-ESTEC Workshop Jul 2nd, 2013

Image credit: CfA, TrES-1 press release (2005)

Transiting Exoplanets Observations:

- IR observations measure the planet's thermal emission.

Tuesday, July 23, 13

-0.1

0.0

0.1

0.2

1.01

1.00

0.99

0.98

0.97

Relative Flux

The TrES-1 System:

- First transit-discovered exoplanet

Alonso et al. (2004)

- First occultation detection

Charbonneau et al. (2005)

- 3 day, circular orbit, T_{eq} ~1150 K

The TrES-1 System:

- First transit-discovered exoplanet

Alonso et al. (2004)

- First occultation detection

Charbonneau et al. (2005)

– 3 day, circular orbit, T_{eq} ~1150 K

Adams et al. (2013)

 Δ mag = 7.7 (2 µm) Separation = 2.3"

The TrES-1 System:

- First transit-discovered exoplanet

Alonso et al. (2004)

- First occultation detection

Charbonneau et al. (2005)

– 3 day, circular orbit, T_{eq} ~1150 K

Adams et al. (2013)

 Δ mag = 7.7 (2 µm) Separation = 2.3"

Spitzer occultations at: - 3.6, 4.5, 5.8, 8.0, and 16 µm.

POET: Photometry for Orbits, Eclipses, and Transits

Cubillos et al. (2013a), Stevenson et al. (2012), Blecic et al. (2013), Nymeyer et al. (2011), Campo et al. (2011)

POET: Photometry for Orbits, Eclipses, and Transits

Cubillos et al. (2013a), Stevenson et al. (2012), Blecic et al. (2013), Nymeyer et al. (2011), Campo et al. (2011)

- Centering (position determination):
- Aperture or optimal photometry.
- Gaussian fitting
- PSF fitting
- Least asymmetry
- Center of light

POET: Photometry for Orbits, Eclipses, and Transits

Cubillos et al. (2013a), Stevenson et al. (2012), Blecic et al. (2013), Nymeyer et al. (2011), Campo et al. (2011)

- Centering (position determination):
- Aperture or optimal photometry.
- Gaussian fitting
- PSF fitting
- Least asymmetry
- Center of light

- Light-curve modeling.
- MCMC, now with Differential Evolution

Braak (2006), Cubillos et al. (2013b, in prep)

Light Curve Results

Waveband (µm)	Depth (%)	Brightness temp. (K)
3.6	0.088 ± 0.023	1253
4.5	0.105 ± 0.024	1142
5.8	0.169 ± 0.043	1250
8.0	0.204 ± 0.043	1128
16	0.35 ± 0.12	1423

Tuesday, July 23, 13

Light Curve Results

Waveband (µm)	Depth (%)	Brightness temp. (K)
3.6	0.088 ± 0.023	1253
4.5	0.105 ± 0.024	1142
5.8	0.169 ± 0.043	1250
8.0	0.204 ± 0.043	1128
16	0.35 ± 0.12	1423

Correlated noise estimators:

Correlated noise estimators:

- RMS vs Bin size plot: Winn et al. (2008)

$$\sigma_N = \frac{\sigma_1}{\sqrt{N}} \sqrt{\frac{M}{M-1}}$$

Correlated noise estimators:

- RMS vs Bin size plot: Winn et al. (2008)

$$\sigma_N = \frac{\sigma_1}{\sqrt{N}} \sqrt{\frac{M}{M-1}}$$

Prayer beads: Bouchy et al. (2005)
Fit-residuals are sequentially shifted
Calculate new best fit: p_i
Shift again and refit

parameter uncertainty = $std({p_i})$

RMS vs bin size:

The simplest test:

- Create random normal-distributions
- Plot RMS vs bin size

 $\sigma_N = \frac{\sigma_1}{\sqrt{N}} \sqrt{\frac{M}{M-1}}$

RMS vs bin size:

The simplest test:

- Create random normal-distributions
- Plot RMS vs bin size

 $\sigma_N = \frac{\sigma_1}{\sqrt{N}} \sqrt{\frac{M}{M-1}}$

- Often (~35%) the curves show large deviations

- Literature search:
 - No fully statistical description.
 - Some citations: Knutson et al. (2009), Bean et al. (2008), Gillon et al. (2007), Desert et al. (2011), ...
 Moutou et al. (2004)

- Literature search:
 - No fully statistical description.
 - Some citations: Knutson et al. (2009), Bean et al. (2008), Gillon et al. (2007), Desert et al. (2011), ...

--> Moutou et al. (2004)

Test:

 Create synthetic light curve: eclipse + white noise

- Literature search:
 - No fully statistical description.
 - Some citations: Knutson et al. (2009), Bean et al. (2008), Gillon et al. (2007), Desert et al. (2011), ...

--> Moutou et al. (2004)

Test:

 Create synthetic light curve: eclipse + white noise

+ correlated noise

 PB underestimates errors if no correlated noise

 PB underestimates errors if no correlated noise

> Doesn't correctly account for the lack of accuracy

Take-home message:

- Assessing correlated noise is important to get appropriate S/N
- Be careful before when using these statistical estimators
- Get to know their limitations

0.2

red noise

Extracting Faint Eclipse Signals: Spitzer Observations of TrES-1

Patricio E. Cubillos

Looking for post-doc for 2014!

EChO-ESTEC Workshop Jul 2nd, 2013

Image credit: CfA, TrES-1 press release (2005)

Differential Evolution Markov Chain: (Braak 2006)

- Usually: Metropolis Random Walk with proposal: $f \sim N(x, w)$
- DE-MC solves problem of scale and orientation of jumps

Differential Evolution Markov Chain: (Braak 2006)

- Usually: Metropolis Random Walk with proposal: $f \sim N(x, w)$
- DE-MC solves problem of scale and orientation of jumps

Differential Evolution Markov Chain: (Braak 2006)

- Usually: Metropolis Random Walk with proposal: $f \sim N(x, w)$
- DE-MC solves problem of scale and orientation of jumps

The WASP-8 System:

- Stellar-binary system
- Least-irradiated hot Jupiter observed at secondary eclipse
- Eccentric (e=0.31), 8-day orbit

Queloz et al. (2010)

The WASP-8 System:

- Stellar-binary system
- Least-irradiated hot Jupiter observed at secondary eclipse
- Eccentric (e=0.31), 8-day orbit

Queloz et al. (2010)

Observations:

- Cold & Warm Spitzer Space Telescope

Light Curve Results

Light Curve Results

Atmospheric Modeling:

(Madhusudhan & Seager 2009, 2010)

- No thermal inversion
- But, no model can fit all data points well.

Conclusions (I):

 The eclipse depths cannot be explained by current models.

Possible explanations:

 Eccentricity might give an answer: Atmosphere shows differential response in time and in strength.

Kataria et al. (2012)

2.- Given the equilibrium temperature (~ 930 K), photochemical processes might alter the planet spectrum.

White noise only

White + Correlated noise:

We need to remove the contribution from WASP-8B.

We need to remove the contribution from WASP-8B.

Implemented two methods: 1.- B-Subtract photometry: Subtract WASP8-B model from data.

We need to remove the contribution from WASP-8B.

Implemented two methods: 1.- B-Subtract photometry: Subtract WASP8-B model from data.

2.- B-Mask photometry: Discard the pixels within a circular aperture around WASP-8B. (masks radii: 1.6, 1.8, 2.0 pix.)

Performed 5X-interpolated aperture photometry (Harrington et al. 2007).

We need to remove the contribution from WASP-8B.

Implemented two methods: 1.- B-Subtract photometry: Subtract WASP8-B model from data.

 2.- B-Mask photometry: Discard the pixels within a circular aperture around WASP-8B. (masks radii: 1.6, 1.8, 2.0 pix.)

Performed 5X-interpolated aperture photometry (Harrington et al. 2007).

Methods x Apertures (4) (7)

(4) x (\sim 7) = \sim 30 light curves.

Spitzer Systematics:

1.- Position dependent flux variations ("Intra-pixel effect").

2.- Time-dependent pixel sensitivity ("Ramp"). Agol et al. (2010)

Light-curve model: $F(x,y,t) = F_s E(t) M(x,y) R(t)$

Charbonneau et al. (2005)

Brightness Temperature:

- Note the 3.6 μ m temperature: $T_{\rm b} \sim 1552 \ {\rm K}$
- Equilibrium temperature:
- Equilibrium temp. at periapsis:
- Modeled the temperature change along the orbit:

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \left[(1\!-\!A)\sigma T_{\mathrm{eff}}^4 \left(\frac{R_*}{r(t)}\right)^2 \cos\psi(t) - \sigma T^4 \right]$$

 $T_{\rm eq} \sim 930 \, {\rm K}$

 $T_{\rm eq} \sim 1130 {\rm K}$

Cowan et al. (2011)

Brightness Temperature:

- Note the 3.6 μ m temperature: $T_{\rm b} \sim 1552 \ {\rm K}$
- Equilibrium temperature:
- Equilibrium temp. at periapsis:
- Modeled the temperature change along the orbit:

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \left[(1 - A)\sigma T_{\mathrm{eff}}^4 \left(\frac{R_*}{r(t)}\right)^2 \cos\psi(t) - \sigma T^4 \right]$$

 $T_{\rm eq} \sim 930 ~\rm K$

 $T_{\rm eq} \sim 1130 {\rm K}$