"Detection and dynamics of multi-planet systems"

$$
\begin{gathered}
\text { Alexanclre C.M. Correial } \\
\text { Jacrues Laskar } \\
\text { Universidade dè Aveiro } \\
\text { IMCCE - Observatoire Paris }
\end{gathered}
$$

GhO Open Science Workshop ESA-ESTEC (tif Netherlands), July 1-3, 2013

Two planets motion

$$
\begin{aligned}
& \ddot{\vec{r}}=-G \frac{(m+M)}{r^{3}} \vec{r}+\vec{\nabla}_{\vec{r}} R \\
& \text { Disturbing function: }
\end{aligned}
$$

$$
R=G m^{\prime}\left(\frac{1}{\left|\vec{r}^{\prime}-\vec{r}\right|}-\frac{\vec{r} \cdot \vec{r}^{\prime}}{r^{\prime 3}}\right)
$$

Since $m^{\prime} \ll M$, the disturbing function can be seen as a perturbation of the keplerian motion.

GJ 876, a "case study"

Correia et al (A\&A 2010)

$3^{\text {rd }}$ planet with $6 \mathrm{M}_{\mathrm{E}}$

Long-term stability

Correia et al. (A\&A. 2010)

HD202206 (5:1 resonance, 2005 data)

HD202206 (2010 updated data)

HD 10180, seven planets!

$$
\text { JD - } 2450000.0 \text { [days] }
$$

Lagrange-Laplace linear system

$$
\left(\begin{array}{c}
z_{1} \\
z_{2} \\
\vdots \\
z_{n}
\end{array}\right)=(S)\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right)
$$

$$
z_{k}=\sum_{j} s_{k j} u_{j}
$$

$$
z_{k}=e_{k} \exp \left(i \varpi_{k}\right)
$$

tidal constraint

1) compute an approximation of (S)

$$
\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{7}
\end{array}\right) \approx(S)^{-1}\left(\begin{array}{c}
z_{b} \\
\vdots \\
z_{h}
\end{array}\right)
$$

2) compute the u_{k}

$$
u_{k}=\sum_{j} S_{k j}^{-1} z_{j} \approx 0
$$

3) add the constraint to χ^{2}

$$
\chi_{R}^{2}=R\left(u_{1}^{2}+u_{2}^{2}\right)
$$

Conclusions:

- Most of the time, a Keplerian fit is sufficient for the determination of the orbits. In all cases, a Keplerian fit is the first approximation.
- Multi-planet systems are very common, very interesting, but hard to disentangle from observational data.
- Better determinations of the orbital parameters of a system can be achieved when dynamical considerations are taken into account during the fitting procedure.
- For systems that appear to be unstable, specific studies need to be made. Up to now, the solution never simple.
- Radial velocities alone can fully determine the architecture of multi-planet systems without the input from astrometry or transits.
- Dynamical studies of these systems can help the observations when searching for additional planets in the system.

