"Detection and dynamics of multi-planet systems" Alexandre C.M. Correia **Jacques** Laskar Universidade de Aveiro **IMCCE - Observatoire Paris**

> EChO Open Science Workshop ESA-ESTEC (the Netherlands), July 1-3, 2013

Two planets motion

 $\ddot{\vec{r}} = -G\frac{(m+M)}{r^3}\vec{r} + \vec{\nabla}_{\vec{r}}R$

Disturbing function:

$$R = Gm' \left(\frac{1}{|\vec{r}' - \vec{r}|} - \frac{\vec{r} \cdot \vec{r}'}{r'^3} \right)$$

Since *m'* << *M*, the disturbing function can be seen as a perturbation of the keplerian motion.

Long-term stability

Epoch i V	[BJD] [deg] [km s ⁻¹]	2,454,477.878676 (fixed) 90 (fixed) 35.53014(±0.00045)							kep
Р	[days] [deg]	1.177662 (±0.000090) 142	5.75962 (±0.00029) 29.4	16.3570 (±0.0042) 99.4	49.747 (±0.023) 20.9	122.72 (±0.19) 237.8	602 (±11) 253	2229 (±106) 317.6	0
е		(±11) 0.0 (fixed)	(±1.9) 0.077 (±0.032)	(±3.3) 0.142 (±0.060)	(±2.2) 0.061 (±0.036)	(±3.2) 0.127 (±0.066)	(±11) 0.0 (fixed)	(±4.1) 0.145 (±0.073)	SO
K	[deg] [m s ⁻¹]	0.0 (fixed) 0.82 (±0.14)	$\begin{array}{c} -41 \\ (^{+70}_{-141}) \\ 4.53 \\ (\pm 0.15) \end{array}$	-51 $\binom{+43}{10}$ 2.92 (± 0.16)	171 (±60) 4.26 (±0.18)	-37 $\binom{+79}{209}$ 2.95 (± 0.18)	0.0 (fixed) 1.55 (±0.22)	-166 (±58) 3.11 (±0.22)	Lo
m sin i a	[<i>M</i>] [AU]	1.40 (±0.25) 0.02226 (±0.00038)	13.16 (±0.59) 0.0641 (±0.0010)	11.91 (±0.75) 0.1286 (±0.0021)	25.3 (±1.4) 0.2695 (±0.0048)	23.5 (±1.7) 0.4924 (±0.0083)	21.3 (±3.2) 1.422 (±0.030)	65.2 (±4.6) 3.40 (±0.12)	La La
$\frac{N_{\rm meas}}{{\rm Span}}$ $\frac{{\rm rms}}{2}$	[days] [m s ⁻¹]				190 2428 1.27 1.23				

keplerian orbital solution

Lovis, Correia,
Laskar et al.
(A&A 2010)

Lagrange-Laplace
linear system
$$\begin{pmatrix}
z_1 \\
z_2 \\
\vdots \\
z_n
\end{pmatrix} = (S) \begin{pmatrix}
u_1 \\
u_2 \\
\vdots \\
u_n
\end{pmatrix}$$

$$z_k = \sum_j s_{kj} u_j$$

$$z_k = e_k \exp(i\varpi_k)$$

tidal constraint

Lovis et al. (A&A 2010) Laskar, Boué, Correia, 2012

Parameter	[unit]	HD 10180 b	HD 10180 c	HD 10180 d	HD 10180 e	HD 10180 f	HD 10180 g	HD 10180 h	
Epoch	[BJD] [deg]	2,454,000.0 (fixed) 90 (fixed)							
/	[km s ⁻¹]		35.52981(±0.00012)						
P	[days]	1.17768	5.75979	16.3579	49.745	122.76	601.2	2222	
		(±0.00010)	(±0.00062)	(±0.0038)	(±0.022)	(±0.17)	(±8.1)	(±91)	
	[deg]	188 (±13)	238.5 (±2.3)	196.6 (±3.8)	102.4 (±2.4)	251.2 (±3.6)	321.5 (±9.9)	235.7 (±6.0)	
1		0.0000	0.045	0.088	0.026	0.135	0.19	0.080	
		(±0.0025)	(±0.026)	(±0.041)	(±0.036)	(±0.046)	(±0.14)	(±0.070)	
	[deg]	39 (±78)	332 (±43)	315 (±33)	166 (±110)	332 (±20)	347 (±49)	174 (±74)	
K	[m s ⁻¹]	0.78 (±0.13)	4.50 (±0.12)	2.86 (±0.13)	4.19 (±0.14)	2.98 (±0.15)	1.59 (±0.25)	3.04 (±0.19)	
n sin i	[<i>M</i>]	1.35	13.10	11.75	25.1	23.9	21.4	64.4	
ı	[AU]	(±0.23) 0.02225 (±0.00035)	(±0.54) 0.0641 (±0.0010)	(±0.65) 0.1286 (±0.0020)	(±1.2) 0.2699 (±0.0042)	(±1.4) 0.4929 (±0.0078)	(±3.4) 1.422 (±0.026)	(±4.6) 3.40 (±0.11)	
V _{meas}					190				
Span	[days]				2428				
ms	[m s ⁻¹]				1.28				

Lovis, Correia, Laskar et al. (A&A 2010)

Conclusions:

- Most of the time, a Keplerian fit is sufficient for the determination of the orbits. In all cases, a Keplerian fit <u>is</u> <u>the first approximation</u>.
- Multi-planet systems are very common, very interesting, but <u>hard to disentangle</u> from observational data.
- Better determinations of the orbital parameters of a system can be achieved when <u>dynamical considerations are taken</u> into account during the fitting procedure.
- For systems that appear to be unstable, specific studies need to be made. Up to now, the solution never simple.
- Radial velocities <u>alone</u> can fully determine the architecture of multi-planet systems without the input from <u>astrometry</u> or <u>transits</u>.
- Dynamical studies of these systems can <u>help the</u> <u>observations</u> when searching for additional planets in the system.