Interpretation of measurements of transiting exoplanets

HD209458b

HD209458b Mass: $0.69 M_J$ Radius: $1.32 R_J$ Parent Star: G0 V Magnitude: 7.65 [Fe/H]_{Star} : 0.04 Semi-major axis: 0.045 AU

Caitlin Griffith (University of Arizona)

Collaborators: J. Turner, J. Teske, R. Zellem, G. Tinetti, M. Swain, P. Deroo, K. Cunha, S., R. Zellem, S. Schuler, V. Smith, J. Tennyson, R. Freedman. N. Lewis, H. Knutson

* Teske et al. 2013

 $\begin{array}{c} \text{XO-2b} \\ \text{Mass: } 0.57 \text{ M}_{\text{J}} \\ \text{Radius: } 0.97 \text{ R}_{\text{J}} \\ \text{Parent Stars (2): } \text{KOV} \\ \text{V Magnitude: } 11.2 \\ \text{[Fe/H]}_{\text{Star}} : 0.39^{*} \\ \text{Semi-major axis: } 0.037 \text{ AU} \end{array}$

Degenerate Solution Sets

Secondary eclipse: derived composition depends on the temperature profile Primary transit: derived composition depends on radius at specified pressure Full phase measurements: derived ΔT has meaning if pressure level is known

What is the nature of these degeneracies? How sensitive are they? How can we derive the composition & thermal profile?

> Analyze all measurements together. And measure the radius

0.0015 **Secondary Eclipse:** 0.0010 Machalek et al. (2009) 0.0005 0.0000 Solutions from 17 million RT calculations

Temperature : 4-5 parameters (Madhusudhan & Seager 2009) Composition: 4 parameters – mixing ratios of H_2O , CH_4 , CO and CO_2

0.0020

5

6 Wavelength (μm)

Principal Component Analysis

Correlations between the n=9 parameters that match the data

Diagonalize the covariance matrix, $C_{n,n}$ i.e. $C_{i,j} = cov(p_i,p_j) \& C_{i,j} = var(p_i,p_j)$ Principal component: eigenvector defined by the maximum eigenvalue

Primary Eclipse

The nature of the degeneracies in the solution set

$$A = \frac{\pi R_P^2}{\pi R_S^2} + \int_{R_P}^{\infty} 2\pi r (1 - T(R)) dr / \pi R_S^2$$

Temperature vs Composition

Higher T -> higher opacity -> higher scale height -> less gas inferred

Rp = radius at specified pressure where the atmosphere is optically thick T(R) = transmission through the limb a distance R from the planet's center

Radius vs Composition

How sensitive?

Results of a few tested analytical calculations

Pressure ranged probed per wavelength: ~ 55 factor of pressure

Sensitivity of optical depth to radius uncertainty: $\frac{\kappa_L}{\kappa_S} = e^{(-\Delta R/H)}$

-> Depends on the atmospheric scale height and absorption regime

Consider a $1M_J$, $1R_J$, T_{eq} =1000 K, H=150 km planet. A planet size increase of 1%: $k_L/k_S = \exp(-4.6) = 0.01$ Effect on derived mixing ratio: Weak line limit: $[H_2O]_L/[H_2O]_S = 0.01$ Strong line limit: $[H_2O]_L/[H_2O]_S = 0.0001 \leftarrow$ Mixing ratio uncertain to a factor of 10,000

Sensitivity of optical depth to temperature $Tr(R) = \exp(-N(R) (2\pi RH)^{1/2} \kappa_e)$

-> Depends on the planet's temperature & spectral opacity

A temperature uncertainty of 300 K: Mixing ratio uncertain to a factor of 4

Transmission Spectra

System	$(R_{planet}/R_{star})^2$	Atmosphere
HD209458b	0.0132	0.001-0.002
GJ1214b	0.0135	0.003 (H ₂)
Earth	8.4x10 ⁻⁵	10-6

Solutions from 17 million RT calculations

HD209458b

Red: best fit / Red - Orange fit within errors

Pressure region probed

Implications Solar abundance star & planet

Moses et al. 2011, Schuler et al. 2011

Study of current data with radius measurements Test assumptions in the analyses & data interpretation

Exoplanets with both primary and secondary transit observations* and easily observable in Northern Hemisphere.

* Excepting GJ1214b

Exoplanet	М	e	Primary	${f T}_{eq}$
CoRoT-1b	1.03	0.025	G0V/6298	1898
CoRoT-2b	3.31	0.028	$\mathrm{G7V}/\mathrm{5575}$	1393
GJ 1214b	0.02	0.014	M/3026	520
GJ436b	0.07	0.029	M2.5/3684	650
HAT-P-6b	1.06	0.052	F6/6570	1530
HD209458b	0.71	0.048	$\mathrm{G0V}/6075$	1316
TrES-1	0.76	0.039	K0V/5230	1060
TrES-2	1.25	0.036	$\mathrm{G0V}/\mathrm{5850}$	1472
TrES-3	1.91	0.023	G/5720	1657
TrES-4	0.92	0.051	F/ 6200	1782
WASP-1b	0.86	0.038	F7V/6200	1644
WASP-12b	1.4	0.023	G0/6300	2320
WASP-2b	0.85	0.031	K1V/5150	1171
WASP-24b	1.03	0.036	F8-9/6075	1514
WASP-3b	2.06	0.031	F7V/6400	1826
XO-1b	0.9	0.049	G1V/5750	1168
XO-2b	0.62	0.037	K0V/5340	1203
XO-4b	1.72	0.056	F5V/5700	1328
HAT-P-1b	0.52	0.067	GOV/5975	1182
WASP-14b	7.34	0.036	F5V/6475	1719

Photometry & Spectroscopy at 0.35 & 0.45 um Steward 1.6 m Kepler Telescope

Instrument: 4096 x 4096 CCD 9.7 x 9.7 arcmin FOV

Enables the interpretation of current spacebased data – here shown for XO-2b

[H₂O] ranges 5 orders of magnitude

[H₂O] ranges 1 order of magnitude

But not quite... Signs of temporal variability for XO-2b

Conclusions (Prep for Echo)

- 1) Radii determinations are essential and can be partially be started from ground.
- 2) Transmission & emission IR spectra complement retrieval efforts.
- 3) Full phase measurements are also needed toward this goal.*
- 4) Characterization of stellar properties (metallicity and activity) can be done now. +
- 5) Assumptions underlying the interpretations of IR data can be studied now.

* Student Rob Zellem and N. Lewis and H. Knutson are analyzing full phase data for HD209458b.

+ Student Johanna Teske and K. Cunha, S. Schuler, V. Smith are determining C, O, Fe and Ni of exoplanet hosts.

XO-2b Radius Dependence

 $H_{XO2b} \sim 300$ km. Therefore, for a 1% radius increase: $k_L/k_S = \exp(-2.2) = 0.11$ But the absorption is in the strong line regime. Thus: $[H_2O]_L/[H_2O]_S = 0.012$ However absorption increases in our favor: $[H_2O]_L/[H_2O]_S = 0.018 = 1/55$

Absorption characteristics at 1.56 um

1st & 2nd transits probe different hemispheres

Similar H_2O , CH_4 , CO_2 and CO abundances are predicted for 1st & 2nd transit at 1 - 0.001 bars (Moses et al. 2011)

Full Model of XO-2b agrees

 $P_{T}/P_{o} \sim e^{-4}$ $P_{T}/P_{o} \sim 0.02$ $P_{T} = 0.03$ $P_{O} = 0.9$ $P_{T}/P_{o} = 0.03$

The atmospheric opacity mainly controls the \sim T=0.5 pressure level

Exoplanets:

Constraints from observations What are their radii? What are their compositions? What are their thermal structures?

Cunha (UofA), S. Schuler (UofA) Richard Freedman (NASA Ames)

Emission Spectra of HD209458b

Works for blue & green points - Burrows et al. 2007

Wavelength (μm)

But wait...

Could this study indicate a heavy species enrichment – an indication of an accretion origin for HD209458b?

Maybe.

But we still need to:

Assess physical viability of temperature profiles.
 Evaluate uncertainties of CH₄ absorption
 Explore spectral details with more observations
 Determine the composition of the host star

Transiting Exoplanets Data: Breaking degenerate solutions

Caitlin Griffith J. Turner, R. Zellem, J. Teske, K. Cunha, S. Schuler, V. Smith

- 1) Emission spectra
 - Y XO-2b
- 2) Transmission spectra
 - XO-2b

3) Cause of degeneracies
4) Breaking the degeneracies
Davíd & Golíath

Transiting Exoplanets Data: Breaking degenerate solutions

Caitlin Griffith J. Turner, R. Zellem, J. Teske, K. Cunha, S. Schuler, V. Smith

Emission spect 1) XO-2b 4600 AU Transmission sp XO-2b XO-2S 3) Cause of degeneracies 4) Breaking the degeneracies Davíd & Golíath 15.07:48:00.0 05.0 47:55.0 Burke et al. 2007 Right ascension

XO-2b Planet:	
0.57 M _J	
0.97 R _J	
a = 0.037 AU	

<u>Star :</u> KOV

Teff = 5340 K

d = 150 pc

Presentation at the Royal Society March 12, 2013

XO-2b Radius Dependence

 $H_{XO2b} \sim 300$ km. Therefore, for a 1% radius increase: $k_L/k_S = \exp(-2.2) = 0.11$ But the absorption is in the strong line regime. Thus: $[H_2O]_L/[H_2O]_S = 0.012$

Radius dependence on derived opacity

An increase in R_p shifts up the pressure & density at R. To achieve the same transmission at R, the optical depth must decrease.

The optical depth of the larger planet, τ_L , relates to that of the smaller, τ_S , as:

$$\frac{\tau_L(R)}{\tau_S(R)} = \frac{N(R)_L \ (2\pi R H_L)^{1/2} \ \kappa_L}{N(R)_S \ (2\pi R H_S)^{1/2} \ \kappa_S}$$

Assume that H & k do not change between the pressure levels sampled by the large and small planet at radius R. Then:

$$\frac{\tau_L(R)}{\tau_S(R)} = e^{(\Delta R/H)} \frac{\kappa_L}{\kappa_S}$$

To achieve the same T at R $\tau_L = \tau_S$ and:

$$\frac{\kappa_L}{\kappa_S} = e^{\left(-\Delta R/H\right)}$$

An increase in R_p shifts up the pressure & density at R

Consider a $1M_J$, $1R_J$, T_{eq} =1000 K, H=150 km planet. A planet size increase of 1% is equivalent to 4.6 H. $k_L/k_S = \exp(-4.6) = 0.01$ Effect on derived mixing ratio: Weak line limit: $[H_2O]_L/[H_2O]_S = 0.01$ Strong line limit: $[H_2O]_L/[H_2O]_S = 0.0001$

-> Depends on the atmospheric scale height and absorption regime

Pressure Range

Depth of the observed light curve:

 $A = \frac{\pi R_P^2}{\pi R_S^2} + \int_{R_P}^{\infty} 2\pi r (1 - T(R)) dr / \pi R_S^2$

The right hand term can be deconstructed into 2 terms

$$\int_{R_P}^{\infty} 2\pi r (1 - T(R)) dr / \pi R_S^2 = \frac{R_O^2 - R_P^2}{R_S^2} + \int_{R_O}^{R_T} 2\pi r (1 - T(R)) dr / \pi R_S^2 - \frac{1}{2} \frac{1}{R_S^2} + \frac{1}{R_S^2} \frac{1}{R_S^2} \frac{1}{R_S^2} + \frac{1}{R_S^2} \frac{1}{R_S^2$$

Note:
$$T(R) = e^{-N_t(R)} \sum_i \kappa_i$$

Integrate the column density along the tangent line:

 $\int_{-\infty}^{\infty} N(r)ds = N(R) \ (2\pi RH)^{1/2}$

N(R) is the density at the closest distance to the planet's center, R

To find the range (R_T and R_O):

- 1) Specify that $T(R_T)$ is small (e.g. 0.05) and $T(R_O)$ is large (e.g. 0.95)
- 2) Solve for R : $T(R) = \exp(-N(R) (2\pi RH)^{1/2} \kappa)$
- 3) Approximate: $N(R_T) = N(R_O) \exp(-(R_T R_O)/H)$

-> Answer: 4 scale heights -> A factor 55 change in P

Transmission spectra of XO-2b

For one Rp and a temperature profile, the data indicates solutions that vary within an order of magnitude.

XO-2b – larger scale height: not so bad

One Rp: solutions range 1 order of magnitude

Radii increased by 1%

Ground-based photometry leverages HST & SPITZER data

For a single temperature profile $4 \times 10^{-4} < [H_2O] < 3 \times 10^{-3}$

Temperature dependence

Yet there are constraints on the temperature profile

Temperature dependence

Observations indicate $[H_2O] \ge 2x10^{-4}$, the solar abundance equilibrium value

System elemental abundances

We know [Fe/H], [C/H], [O/H] and [C/O] of XO-stars.

Carbon and Oxygen Abundances in the Hot Jupiter Exoplanet Host Star XO-2B and its Binary Companion J. K. Teske, S. C. Schuler, K. Cunha, V. Smith, C.A. Griffith Submitted to ApJ Letters

Parameter*	XO-2S	XO-N
[Fe/H]	0.28±0.14	0.39±0.14
[Ni/H]	0.38±0.04	$0.44{\pm}0.04$
[O/H]	0.18 ± 0.15	0.34±0.16
[C/H]	0.26±0.11	0.42±0.12
C/O	0.60±0.19	0.60±0.20

- [Fe/H] values agree with Burke et al. 2007, Ammler-von Eiff et al. 2009 & Torres et al. 2012
- [Ni/H] values by Teske et al. 2013 are smaller than Burke et al. values.

Combine 1st and 2nd transits: HD209458b

Constraints on temperature

Moses et al. 2011

Full phase measurements at Two spitzer wavelengths.

Mass of planet (M_{\oplus})

* Teske et al. 2013

Charbonneau et al. 2009

Analyses of low resolution optical to IR data of transiting planets

Caitlin Griffith (University of Arizona)

Collaborators: J. Turner, J. Teske, R. Zellem, G. Tinetti, M. Swain, P. Deroo, K. Cunha, S., R. Zellem, S. Schuler, V. Smith, R. Freedman, J. Tennyson, N. Lewis, H. Knutson

Secondary Eclipse: Dayside Emission

Temperature parametrized with 5 parameters; Composition of H₂O, CH₄, CO and CO₂ with 4

-> emission from higher levels

-> emission from higher levels

Many combinations of temperature & composition fit the data

Swain et al. 2009

Acknowledgments...

Range of efforts

Observations: Bouwman, Beaulieu, Gomez, Waldmann

Data reduction: Waldmann, Bouwman, Beaulieu

Molecular spectroscopy: Tennyson

Radiative transfer: Koskinen, Menanger

Chemistry: Venot

Dynamics: Cho

Interior structure

Planetary Systems: Sozzetti