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Fig. 3. Predicted effec-
tive temperatures and
radii (in R, ~70,000
km) of sorme extraso-
lar planets and brown
dwarfs, including rea-
sonable uncertainties
for their mass, albedo,
and age (see text) and
assuming solar com-
position. Actual radii
could be significantly
smaller if the planets
contain large propor-
tions of heavy ele-
ments. The dashed line
is for isolated H-He (Y
= 0.25) objects after
10 gigayears of evolu-
tion. The upper panel
also shows potentially
important chemical spe-
cies expected to con-
dense near the photo-
sphere in the indicat-
ed range of effective
temperatures.
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tent with the recent compression experiments
is essential. The Cassini orbiter will accurate-
ly measure the chemical composition and
temperature structure of Saturn’s atmosphere
(and hopefully of Jupiter as well, although
with a lesser accuracy), but it would be cru-

Uncertainties (%)

Fig. 4. Fractional uncertainty in radii of extra-
solar giant planets (at 0.05 astronomical units
from solar-type stars) due to uncertainties in
hysical parameters (top) and input physics
bottom), as a function of mass. The corre-
sponding absolute uncertainty about the frac-
tion of the planetary mass that is due to heavy
elements is directly pmpomonal to the radii
uncertainty [a 10% uncertainty in model radii
corresponds to a ~9% uncertainty about the
mass of heavy elements; that is, in that case
and for a 1-M, (318 M,) planet, the mass of
heavy elements would be known with an accu-
racy of ~30 M.). The albedo was assumed to
lie between 0.1 and 0.5; the age between 3 and

7 gigayears.
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Linking compositions & formation scenario
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Getting the compositions of transiting gaseous planets



The radius anomaly problem
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The radius anomaly problem
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The radius anomaly problem
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Vv Vv yes weak al. (2007), Guillot(2008)
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Compositions of giant planets
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Compositions of giant planets
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The importance of the atmosphere
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The importance of the atmosphere

Showman & Guillot (2002)
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Guillot & Showman (2002);
see also Spiegel & Burrows (2013)

Knutson et al. 2007



EChQO’s contribution

® The radius anomaly problem should be (mostly)
solved before EChQO'’s launch

® However, in order to obtain global compositions
accurately, the main limitation will be the
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To smaller planets
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Radius [km]

The case of G| 1214b

Envelope composition: 100% H20 + ices 50% (H20 + ices) + 50% H-He
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Radius [km]

The case of G| 1214b

Envelope composition: 100% H20 + ices 50% (H20 + ices) + 50% H-He
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Compositions of super-Earths

silicate atmosphere volatile-rich atmosphere
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Compositions of super-Earths

silicate atmosphere volatile-rich atmosphere
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® The presence of hydrogen and water in close-in

planets is a major piece in the planet formation
puzzle

® Detailed determinations of the abundances of the
parent stars will be highly desirable



EChQO’s contribution

® Measuring spectra of small Neptune-like planets
and super-Earths will be essential to determine the

composition of the atmosphere

® Requires mostly measurements at primary or secondary
eclipse

® Of course, getting a full lightcurve for some of these targets
would be a big plus to understand atmospheric dynamics.

® This will be essential to determine the global planet
composition and its evolution history.



Probing the interior structure



Probing interior structures with k2

The k2 |Ove number may be The k2 apsidal precession is
dominant C"]',’ for close-in

thought as a measure of the level of (eccentric) planets

the central condensation. Its T

measurement can inform us on the o

presence of a central core.

Seager & Hui (2002) proposed to
determine it from the planet shape
during transit ingress & egress. This =
is probably too difficult (Barnes & o ,
Fortney 2003). However it can be I R = v A
measured from the planet's apsidal

precession (Ragozzine & Wolf 2009) 0.04
or from its fixed-point eccentricity

(Mardling 2008, Batygin et al. 2009) 003 [/

This requires the discovery of short
period, (slightly) eccentric planets,
the possibility to determine
accurately primary & secondary
transits and a long time-base, or
discovery of a slightly eccentric L A L 4 |
close-in planet perturbed by an 02 04 06 08 10
eccentric massive companion.
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Probing interior structures with k2

The k2 love number may be
thought as a measure of the level of
the central condensation. Its
measurement can inform us on the
presence of a central core.

Seager & Hui (2002) proposed to
determine it from the planet shape
during transit ingress & egress. This
is probably too difficult (Barnes &
Fortney 2003). However it can be
measured from the planet's apsidal
precession (Ragozzine & Wolf 2009)
or from its fixed-point eccentricity
(Mardling 2008, Batygin et al. 2009)

This requires the discovery of short
period, (slightly) eccentric planets,
the possibility to determine
accurately primary & secondary
transits and a long time-base, or
discovery of a slightly eccentric
close-in planet perturbed by an
eccentric massive companion.

fixed point eccentricity, €
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The k2 apsidal precession is
dominant only for close-in
(eccentric) planets
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EChQO’s contribution

® The determination of k2 would require:

® This is probably a rare event.



conclusion



Conclusion: Science with EChO

® |Interior structure & evolution
®  5.50 Mk planets are key targets
®  Evaporation is an important factor for close-in planets

®  Only for rare case with a close-in nearly circular planet perturbed by a distant, eccentric
companion

® Atmospheric composition

®  Atmospheric temperature

®  Constrain the eccentricity

® Possibility to compare visible vs. infrared lightcurves

® Formation



