A Spitzer Survey of Exoplanet Secondary Eclipses

Joseph Harrington M. Oliver Bowman and the UCF Exoplanets Group

Planetary Sciences Group University of Central Florida Orlando, Florida

Atmospheres and Astrophysics

- Exoplanets combine planetary science and astrophysics observation
- For astrophysics, exoplanet data are awesome!
- For planetary science, quality is terrible!
- More info content in one Cassini image than all detected exoplanet photons combined
- Must interpret data or it's not science
- What can models do with so few points?
- When should we believe them?
- What can we do without them?

Spitzer Secondary Eclipses

- Emission by planets in bands 1-few µm wide
- 3.6, 4.5, 5.7, 8.0, 16, 24 μm
- Many dozen planets accessible
- Access some planets < 1000 K
- No comparable sensitivity at these wavelengths
 - Complements obs. at other wavelengths
- Eclipses can absolutely calibrate spectra
- Demonstrates need for EChO!
 - Purpose-built for stability on exoplanet spectra

UCF's Spitzer Exoplanet Program

- Dozens of Spitzer secondary eclipses
- POET: Photometry of Orbits, Eclipses, Transits
 - Precision centering (~0.01 pix)
 - Interpolated aperture photometry (cures pixelation)
 - Try dozens of systematics models per event
 - Statistical rigor: BIC selects/eliminates models
 - BLISS intrapixel mapper (Stevenson *et al.* 2012a)
 - Markov-chain Monte Carlo phase-space exploration
 - Tests: convergence, red noise, unimodality,...
 - Detailed methods descriptions in papers

Reliability slows things down and costs more

~6 papers / yr, lead ~2+ / yr, ~1 high impact / yr

Why So Careful?

Reanalyses show problems of simple analyses

- Events often weak, $<4\sigma$, upper limits
- Most analyses have right eclipse depths
 - A few multimodal ones might change
- BUT, many error bars are likely wrong
 - Too low: bad, eliminate valid theory
 - Too high: also bad, accept invalid theory
- Reviewers (US!) should be pickier!
 - Many models, show posterior dist., show tests
 - Our papers discuss what to look for & why

Eclipses In Ensemble

Plot aggregate exoplanet eclipse data

- ID trends, behavior types
- Motivate theoretical work
- Model-based comparisons
 - Who has an inversion (at depths probed)?
 - When does disequilibrium chemistry happen?

 Good to do, but depends on 1D models based on too few points

Model-Independent Comparison

- Want model-independent atmospheric statistic
- Compare planetary output to input fluxes
- Compare measured output fluxes to each other

- Same or different planet

- Intuitive units wrt chemistry, clouds
- Stellar fluxes differ for each planet, not intuitive
- Neither are eclipse depths (depend on star)
- Temperature is usual atmos. energy parameter
- Try brightness (T_b) vs. equilibrium (T_{eq}) temps

Brightness Temperature

- Temperature of a similar blackbody that would give observed flux in that bandpass
- Measure of *flux*, not *T*, but related to object *T*
- If object is $BB \rightarrow T_b = T$ in all filters
- T_{eq} is BB temp balancing received radiation
- Can relate $T_{\rm b}$ to chemical & cloud temps

T_b vs. T_{eq}: 2007

emission

Transition cloudy -> cloudless (cf brown dwarfs)

- But maybe *T(p)* profiles too steep to have clouds on many planets?
- Data not yet clear
- Just a few planets with higher albedo

- Transition cloudy -> cloudless (cf brown dwarfs)
- Breakdown of circulation $(\tau_{rad} < \tau_{advect})$
 - Discussed by Showman & Guillot (2002)
 - $T_{\rm rad}$ becomes so short that heat leaves fast
 - No time to advect to night side
 - Poor heat redistribution

Prediction for Phase Curves

Perez-Becker and Showman 2012

WASP-18b 4.5-µm Phase Curve

Maxted et al. 2012, MNRAS

- Transition cloudy -> cloudless (cf brown dwarfs)
- Breakdown of circulation $(\tau_{rad} < \tau_{advect})$
- Lack of TiO cold trap
 - Still not clear when it condenses
 - Should exist...
 - Should be abrupt

- Transition cloudy -> cloudless (cf brown dwarfs)
- Breakdown of circulation ($\tau_{rad} < \tau_{advect}$)
- Lack of TiO cold trap
- Other heating mechanisms
 - Mechanical (Kzz) greenhouse
 - Ohmic heating
 - High opacity of ions from ohmic heating?
- Onset seems sharp
- Need to fill in gaps & get points ~1800-2000 K

Conclusions

- Model-independent $T_{\rm b}$ vs. $T_{\rm eq}$ plot shows
 - Clear difference between $T_{eq} <> \sim 2000 \text{ K}$
 - Promising: breakdown of circulation
 - Need more T_{eq} < 1200 K obs (hard!)
 - T_{eq} > 2000 K possible from ground!

Spitzer Analysis Checklist

- Just because model fits does not mean it's right
 Eclipses require 10⁻⁴ accuracy!
- Worry about 2nd- & 3rd-order effects
- Observe in a flat pixel, 3 hours before, 2 after
- Try many apertures, centering methods
- Use subpixel photometry
- Try many intrapixel and ramp functions
- Run variations in all reasonable combinations
- Use SDNR, BIC, AIC to choose best, report ties
- Atmos: Report *T*(*p*) and contribution functions