Max Planck Institute for Solar System Research

From cold to warm gas giants: Atmospheric GCM modeling

Alexander Medvedev, Jisesh Sethunadh, Paul Hartogh

Stratospheres of gas giants

• Covers middle atmosphere from the

troposphere (above the cloud-top layer) to the lower thermosphere

- This atmospheric layer is almost equally forced from below (interior) and above (Solar/star irradiation)
- That's where IR signals (to be detected by Echo) are coming from
- Free lower boundary
- 1000 10⁻³ mb for Jupiter
- 2000 10⁻³ mb for Saturn

Geostrophic adjustment tends to occur at length scales comparable to the Rossby radius of deformation:

$$L_D = \frac{NH}{f} \propto \frac{T}{gf}$$

N is the Brunt-Vaisala (buoyancy) frequency

Implication for modeling: to simulate vortex formations and breakups , models must resolve L_D .

Planet	a^* (10 ³ km)	Rotation period [♯] (Earth days)	Ω (rad sec ⁻¹)	gravity ^ℵ (m sec ⁻²)	$_{(\mathrm{Wm^{-2}})}^{F^{\square}_{*}}$	T_{e}^{\bigstar} (K)	H_p^{\dagger} (km)	U^{\ddagger} (m sec ⁻¹)	Ro¶	L_D/a^{\clubsuit}	$L_{\beta}/a^{\diamondsuit}$
Venus	6.05	243	3×10^{-7}	8.9	2610	232	5	~ 20	10	70	7
Earth	6.37	1	7.27×10^{-5}	9.82	1370	255	7	~ 20	0.1	0.3	0.5
Mars	3.396	1.025	$7.1 imes 10^{-5}$	3.7	590	210	11	~ 20	0.1	0.6	0.6
Titan	2.575	16	4.5×10^{-6}	1.4	15	85	18	~ 20	2	10	3
Jupiter	71.4	0.4	$1.7 imes 10^{-4}$	23.1	50	124	20	~ 40	0.02	0.03	0.1
Saturn	60.27	0.44	$1.65 imes 10^{-4}$	8.96	15	95	39	~ 150	0.06	0.03	0.3
Uranus	25.56	0.72	$9.7 imes 10^{-5}$	8.7	3.7	59	25	~ 100	0.1	0.1	0.4
Neptune	24.76	0.67	$1.09 imes 10^{-4}$	11.1	1.5	59	20	~ 200	0.1	0.1	0.6

- GCMs for fast rotating gas giants (Jupiter, Saturn) require very high spatial resolution, almost at the limit of modern computers.

- Venus and Titan GCMs are the least demanding.

Turbulence and jet streams

When horizontal scales become large, anisotropy due to rotation causes elongation in the east-west direction.

is the <u>Rhines scale</u>. $\beta = df/dy$ is the gradient of Coriolis parameter with northward distance *y*.

Jupiter, Saturn have ~20 east-west jets. Uranus and Neptune have 3 broad jets. This is more or less in line with the scale-based estimates.

Model setup

Resolution

horizontal: up to 240 x 180 vertical: 3 to 4 points to a scale height (40 to 60 vertical levels)

Wind nudging

$$F_X = (\bar{u}_{obs} - u) / \tau_u$$

horizontal bilinear diffusion vertically increasing coefficient

Newtonian relaxation

$$F_T = (T_{eq} - T) / \tau_{rad}$$

Cold giants

Fig. 2 One-day averaged fields from the simulation for the cold giant: (a) Zonal mean temperature (in K), (b) residual streamfunction (contour lines) and residual vertical velocity (in m s ?1 , shaded), (c) mean zonal wind (contours) and EP flux ...

Zonal mean temperature

a) Zonal mean temperatures (K)

Non-zonal variations

70 days of Cassini pictures

Hot Jupiters

• Close to stars \longrightarrow tidally locked ($\Omega=0$). Number of jets is N expected to be small.

$$V_{jet} \sim \sqrt{\frac{2\Omega a}{U}}$$

 Hot and slow rotating — Rossby radius of deformation is large.

$$L_{\rm D} = \frac{NH}{f}$$

"Warm" gas giant

Could be warm gas giants?

Sufficiently big, and sufficiently far from the stars

Warm gas giant simulation

Fig. 4. Latitude-height cross-sections of the fields simulated for the warm Saturn-like (a) Temperature (contours) and deviations of the temperature from the "cold" giant case simulation (shaded); (b) mean zonal wind (contours) and deviations from the "cold" giant case; (c) residual meridional circulation (contours) and residual vertical velocity (shaded).

Reconnection to the EChO science

- Constrain physical parameters
- Provide a knowledge of species to estimate radiative forcing
- Difference between the observed and radiative equilibrium temperature points to the atmospheric dynamics
- How GCM predictions can guide observations?
- Are circulations on super-earths distinguishable from that on warm gas giants?
- Multitude of planets would allow to update the scaling theory